
Oscillatory
convection of

cold water

487

International Journal of Numerical
Methods for Heat & Fluid Flow,

Vol. 9 No. 4, 1999, pp. 487-508.
# MCB University Press, 0961-5539

Received September 1998
Revised November 1998

Accepted December 1998

Numerical study on oscillatory
convection of cold water in a

tall vertical enclosure
C.J. Ho and F.J. Tu

Department of Mechanical Engineering, National Cheng Kung
University, Tainan, Taiwan, Republic of China

Keywords Density, Natural convection, Numerical simulation, Water

Abstract The stability of two-dimensional natural convection of water near its density
maximum (cold water) inside a vertical rectangular enclosure with an aspect ratio of eight is
investigated via a series of direct numerical simulations. The simulations aim to clarify, under the
influence of density inversion, the physical nature of the instability mechanism responsible for the
laminar buoyancy-driven flow transition from a steady state to an oscillatory state in the
enclosure filled with cold water. Two values of the density inversion parameter, �m= 0.4 and 0.5,
where the density inversion of cold water may exert strong influence on the flow, are considered in
the present study. The results show that the transition from steady state to periodically oscillatory
convection arises in the cold-water-filled enclosure through a Hopf bifurcation. The oscillatory
convection in the water-filled enclosure for both values of �m is found to feature an oscillatory
multicellular structure within the contra-rotating bicellular flow regions. A traveling wave motion
accordingly results along the maximum density contour, which demarcates the contra-rotating
bicellular flows in the enclosure. For both cases the nature of transition into unsteadiness is found
to be buoyancy-driven. The critical Rayleigh number for the bifurcation at �m = 0.4 is found to be
markedly higher than that at �m = 0.5.

Nomenclature
A = aspect ratio, H=W
b = exponent in the density equation
f� = frequency, Hz
f = dimensionless frequency, f�W 2=�
g = gravitational acceleration, m/s2

H = annulus height, m
k = thermal conductivity, W=m � K
Nu = Nusselt number
Pr = Prandtl number, �=�
RaH = Rayleigh number based on annulus

height, g � rsp��T�bH 3=����
RaW = Rayleigh number based on gap width,

g � rsp��T�bW 3=����
rsp = coefficient in density equation
T = temperature, �C
�T = temperature difference between inner and

outer wall, �Th ÿ Tc�, �C
t = time, s
u; � = components of velocity, m/s
W = width, m

x�; y� = Cartesian coordinates, m
x; y = dimensionless coordinates, x�=W , y�=W
� = thermal diffusivity,
� = dimensionless temperature,

�T ÿ Tc�=�T
�m = density inversion parameter,

�Tm ÿ Tc�=�T
� = kinematic viscosity, m2/s
� = density, kg/m3

� = dimensionless time, �t=W 2

� = stream function, m3/s
 = dimensionless stream function, �=��W�
!� = vorticity, s±1

! = dimensionless vorticity, !�W 2=�
Subscripts
cr = critical state
c = cold wall
h = hot wall
m = maximum density or periodically mean

value
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Introduction
Water and several liquid metals are known to feature an anomalous density-
temperature relationship, the so-called density inversion phenomenon, having
their maximum density at a temperature Tm above the freezing temperature.
For water at sea-level atmospheric pressure is about 4ëC. The density inversion
phenomenon of water near 4ëC (cold water) is known to provoke some peculiar
behaviors of the buoyancy-driven convection flow and heat transfer in
enclosure, such as multicellular flow structure and heat transfer extreme.
Owing to the important role it plays in many technical and engineering
applications, natural convection of cold water in a vertical rectangular
enclosure has received considerable research attentions since the pioneering
numerical work by Watson (1972). Representative works include Seki et al.
(1978a,b), Inaba and Fukuda (1984a,b), Lin and Nansteel (1987), and Tong and
Koster (1993).

There exist relatively few studies concerning transient natural convection of
cold water in vertical rectangular enclosures. The transient natural convection
cooling of cold water in a rectangular enclosure was studied numerically by
Vasseur and Robillard (1980) and Robillard and Vasseur (1981, 1982). Braga
and Viskanta (1992) undertook a combined experimental and numerical
investigation of the transient natural convection cooling of cold water by a
vertical cold wall at 0ëC of a vertical rectangular enclosure of aspect ratio 0.5
with a free surface. The hot vertical wall temperature was equal to the initial
temperature of stagnant water in the enclosure, which was varied from 8 to
20ëC. Results presented were rather limited to the first 30 minutes of the
transient cooling process inside the enclosure. A similar transient cooling
problem but in a vertical enclosure of aspect ratio 0.75 was further studied by
McDonough and Faghri (1994). The transient cooling processes considered
were all found to reach steady state. The effect of density inversion on flow
pattern and temperature distribution was found dominant with the initial and
hot wall temperature above the density maximum temperature. Tong and
Koster (1994) performed a numerical study of the transient natural convection
of cold water in a vertical rectangular enclosure to examine the effect of aspect
ratio in the range from 0.25 to 10.

From the foregoing studies concerning steady state or transient natural
convection of cold water in vertical rectangular enclosures, it can be noticed
that the Rayleigh numbers considered were rather restricted to those of below
106. For natural convection of cold water in vertical rectangular enclosures at
high Rayleigh numbers (Ra > 106) there exists only three previous studies.
Lankford and Bejan (1986) reported an experimental study of steady natural
convection of cold water in a tall vertical enclosure of aspect ratio 5.05 for a
Rayleigh number range of 108 to 1011. The enclosure was differentially heated
with mixed boundary conditions having a constant heat flux boundary for one
vertical wall while an isothermal temperature below 4ëC for the opposite
vertical wall. When temperature of the hot and cold vertical walls encompassed
the density maximum temperature, bicellular flow structure was observed to
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prevail in the enclosure. On the other hand, Ivey and Hamblin (1989) performed
experiments for natural convection of cold water in a differentially heated
shallow enclosure of aspect ratio in the range between 0.1 to 0.5 with the
Rayleigh numbers varying between 105 and 108. The vertical walls were
maintained isothermal, respectively, at 0ëC and 8ëC. Similar to the finding for
the tall enclosure by Lankford and Bejan (1986), the buoyant flow field of cold
water in the low-aspect-ratio enclosure featured a bicellular structure.
Moreover, they observed through the dye-injection flow visualization that the
interior sinking jet-like flow structure along the maximum density contour was
unstable for RaH > 107. Recently, by means of a finite element method,
Nishimura et al. (1995) attempted to simulate natural convection flow of cold
water in a vertical enclosure of aspect ratio 1.25 at high Rayleigh numbers of
105 � 108. However, the numerically predicted flow and temperature fields of
cold water at the high Rayleigh numbers, that may be expected to be unstable,
remained stable displaying a symmetry with respect to the midline of the
enclosure. The adoption of a symmetric correlation for the density of water as a
function of temperature in their numerical calculations was attributed to the
failure of yielding unstable flows at the high Rayleigh numbers. Asymmetries
of flow pattern and temperature profile as the requisites for the onset of
unstable cold water convection in the enclosure were suggested.

A reflection through the foregoing literature reveals that there appears no
previous study, to our best knowledge, concerning the transition behavior of
natural convection in vertical rectangular enclosure containing cold water. The
present study therefore aims to explore the transition from steady to unsteady
natural convection in a vertical rectangular cold-water-filled enclosure with an
aspect ratio of eight. The physical configuration considered here is primarily
motivated by the problem of related interest concerning natural convection
dominated melting of ice in a rectangular enclosure (Ho and Chu, 1993; Ho et al.,
1996). Moreover, in an earlier study (Ho and Lin, 1990) concerning natural
convection of cold water in the vertical annuli, a somewhat unstable
multicellular flow structure featuring a wavy maximum density contour was
found in an aspect-ratio-eight annulus. It was then quite natural for us to
further continue with this particular aspect ratio. To this end, direct numerical
simulations have been undertaken to obtain the long-time behavior of the two-
dimensional natural convection of cold water in the tall vertical rectangular
enclosure.

Problem formulation
Consider a two-dimensional rectangular enclosure of height H and width W
filled with water near its density extreme (cold water) as illustrated in Figure 1.
The left and right vertical walls of the enclosure are differentially heated at
constant uniform temperature Th and Tc (< Th), respectively. The horizontal
sidewalls of the enclosure are assumed adiabatic. The Boussinesq
approximation is assumed to be valid for the two-dimensional buoyancy-driven
flow of cold water within the enclosure. Moreover, the nonlinear density-
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temperature relation of cold water is described incorporating a correlation
proposed by Gebhart and Mollendorf (1974) of the following form:

� � �m�1ÿ rsp � T ÿ Tmj jb� 0�C � T � 20�C �1�

where �m (=999.972kg/m3 is the maximum density, rsp � 9:297173� 10ÿ6

��C�ÿb, Tm � 4:0293�C and b � 1:894816.
The dimensionless equations governing the time-dependent buoyancy-

driven flow of cold water may be written in terms of vorticity, stream function
and temperature as
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where !,  , and � are the dimensionless vorticity, stream function, and
temperature, respectively. Moreover, � , �m, Pr and RaW are the dimensionless
time, the density inversion parameter, the Prandtl number, and the Rayleigh
number, respectively.

The boundary conditions of the present problem are taken as

 � u � v � 0; x � 0; 1; y � 0;A;
� � 1; x � 0;
� � 0; x � 1;

@�
@y
� 0; y � 0;A:

9>>=>>; �3�

As the initial conditions, the solutions calculated earlier for a different Rayleigh
number are taken. From the foregoing formulation, the present problem with
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Figure 1.
Schematic diagram of
physical configuration
and coordinate system
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the aspect ratio A fixed at eight and the Prandtl number Pr = 12.5 for cold
water apparently depends on two parameters: the Rayleigh number RaW and
the density inversion parameter �m.

Moreover, the governing equation describing the conservation of
dimensionless fluctuating kinetic energy, �u0iu

0
i=2� (Janssen and Henkes, 1995)

of oscillatory convection in the enclosure can be derived as the following form:
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From close examination of equation (4), one may gain physical insight into the
nature of the instability mechanism responsible for transition into
unsteadiness. The first and second groups of terms (designated by I and II) on
the right hand side of equation (4) become vanished by spatial integration over
the enclosure and temporal integration over one period of oscillation,
respectively. Only the third group of terms designated by III can contribute to
the total fluctuating kinetic energy for an oscillatory convective flow in the
enclosure. Specifically, the terms of ÿu

0
iu
0
j@�ui=@xj and RawPr�2���ÿ �m��0�

��0 �2��i2 represent the local production of fluctuating kinetic energy due to the
shear of the mean flow and the buoyancy force, respectively; while the term
ÿPr@u

0
i=@xj@u

0
j=@xj represents the viscous dissipation of fluctuating kinetic

energy. It should be noted that for mathematical simplicity in deriving equation
(4), a parabolic form of density-temperature relation suggested by Simmons
(1980) was adopted instead of using equation (1) directly.

Numerical method
The governing differential equations, equation (2), are discretized spatially
with a finite difference method involving the second-order central-difference
scheme for the diffusion terms and the QUICK-2D scheme (Leonard, 1983) for
the convective terms. The integration of the equations in time is then performed
fully explicitly with second-order accuracy. Boundary vorticity is treated using
Thom formula (Roache, 1976).

In order to accurately resolve the high-gradient in the boundary layers
developed along the vertical walls, a non-uniform grid in the x-direction,
providing finer grids toward the vertical walls of the enclosure is constructed.
A uniform grid is employed in the y-direction.
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Each simulation is started using the results of previously obtained solution
of nearby value of the Rayleigh number as the initial condition. At each time
step, the discretized stream function equations are iteratively solved by a line
successive relaxation method until a relative convergence criterion of less than
5� 10ÿ8 is met. The solution is considered to be converged to steady state if
the relative convergence criteria of 10ÿ7 and 10ÿ8 are, respectively, satisfied for
solutions of vorticity and temperature.

For stable and accurate explicit double-precision calculations on a DEC
Alpha-Station 250/4/233, a time step of the order of 10ÿ6 was found to be
sufficiently small. It insures that at least 2,000 time increments were used to
resolve the fine temporal scale of oscillatory convection flow for one period.
Typical CPU time required for a simulation of oscillatory convection was
approximately more than 120 hours. Grid resolution independence is assured
by comparing solutions obtained on various gird systems ranging from
27�161 to 57�281 meshes. For instance, at RaW = 106 and �m = 0.4 it was
found that in comparison with that using the finer mesh, 37�201 mesh can
yield a difference of less than 0.8 per cent, 0.6 per cent and 1.2 per cent,
respectively, for the dimensionless oscillation frequency f , � max and � min.
Accordingly, in the present study a grid system of 37�201 was used for the
simulations of the Rayleigh numbers up to 106, while a finer mesh of 47�241
was employed for those beyond 106.

Furthermore, accuracy of the present numerical code has been established
through a series of validation simulations. Simulations for two-dimensional
natural convection in an air-filled square enclosure have been performed and
were found to agree well with the results presented by Le QueÂreÂ (1991) and de
Vahl Davis and Jones (1983), as demonstrated in Table I. Further validation
simulations have been conducted for the problem of transient natural
convection of cold water in a vertical rectangular enclosure of A = 1.25
considered by Nishimura et al. (1995). The calculated results of the surface-
averaged Nusselt number at four different values of Th (= 4, 6, 8, and 10ëC) with
Tc = 0 ëC were found to agree both qualitatively and quantitatively well with
those of Nishimura et al. (1995). Meanwhile, similar to the findings of
Nishimura et al. (1995) and Ivey and Hamblin (1989), the steady state was found
to be approached in time of 2tf , where tf is a time scale of HW�2�Ra

1=4
H � with

RaH � g � rsp�TbH 3=��.

Table I.
Comparison of results
for natural convection
in air-filled square
enclosure

�Nuh;  max; fd�

RaW

de Vahl Davis and
Jones (1983) Le QueÂreÂ (1991) Present simulation

105 (4.509, ±, ±) (4.522, 9.619, ±) (4.540, 9.607, ±)
106 (8.817, 16.75, -) (8.825, 16.811, ±) (8.850, 16.825, 0.097)
107 (±, ±, ±) (16.523, 30.170, ±) (16.685, 30.244, 0.095)
108 (±, ±, ±) (30.225, 53.85, 0.107) (30.770, 54.452, 0.101)
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Results and discussion
The numerical simulations were performed by varying Rayleigh number at
two values of the density inversion parameter �m = 0.4 and 0.5, where the
density inversion effects may affect most significantly on the buoyant flow
(Seki et al., 1978; Lin and Nansteel, 1978). The numerical results are described
hereinafter to unveil the prominent effects of increasing the Rayleigh number
progressively under a fixed �m on the transient evolution to steadiness and the
onset of transition into unsteadiness of the buoyancy-driven flow in the
enclosure. The flow structure and the temperature distribution are respectively
illustrated by the contour plots of streamlines and isotherms. The contours of
solid and dashed lines in the plots represent, respectively, the positive and
negative values of the physical quantity of interest. Also superimposed on the
contour maps is the maximum density contour of cold water denoted by the
heavy dashed line.

Transient to steady convection
The simulations for �m= 0.4 begin with RaW = 7� 104 using a stagnant water
at a uniform temperature of � � 0 as the initial conditions. Development of the
natural convection of cold water within the enclosure was initiated by suddenly
raising the temperature of the left vertical wall to a constant value � � 1. The
time-dependent solution was found to evolve asymptotically toward a steady
state flow field and temperature distribution shown in Figure 2(a). A contra-
rotating bicellular flow structure dominated by the clockwise circulation
prevails in the enclosure. The isotherms are nearly parallel in the enclosure,
except for the bottom and the upper quarter regions, in which a convection-
dominated distribution of isotherms can be discerned. In particular, similar to
what was observed in the experiment of Lankford and Bejan (1986), the flow
structure along the maximum density contour may be viewed as a sinking
maximum density jet emanating from the upper part of the cold wall. The
maximum density jet-like stream slants downward and then turns into the
enclosure core through a `̀ neck-down'' region of the clockwise circulation flow.

Simulations for �m = 0.4 were then continued for the subsequently higher
Rayleigh numbers using the solution for the closest lower Rayleigh number as
the initial condition. With the increase of Rayleigh number up to 4� 105, the
oscillatory transient flow developments in these cases all were found to evolve
ultimately toward steady state, but at increasingly longer time with the
increase in the Rayleigh number. This is a clear indication of approaching
critical point of transition into unsteadiness. At RaW = 4� 105, for instance,
the steady state flow structure and temperature distribution, as displayed in
Figure 2(b), is reached after � > 4.0. As can be noticed in the streamline plot of
Figure 2(b), with the increasing RaW , the contra-rotating bicellular flow is
greatly strengthened and is meanwhile superimposed by a multicellular
structure within the clockwise circulation. This signifies the onset of transition
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from unicellular to multicellular regime. Waviness of the thermal boundary
layer along the hot wall as well as of the maximum density contour is visible
around the neck-down region.

Similar to those for �m = 0.4, the time-dependent simulations under the
condition of �m = 0.5 start with RaW = 3� 104 using an initial condition of
stagnant cold water at a temperature of � = 0. The simulation approaches a
steady state featuring a rather symmetric flow structure of two contra-rotating
circulation regions of approximately equal strength and size demarcated by the
vertically oriented maximum density contour (not shown here). Up until RaW =
7� 104 the steady state natural convection persists for the subsequent
simulations based on the solution for the previously lower Rayleigh number.

Transition to oscillatory convection
As the Rayleigh number is further increased to 5� 105 under the condition of
�m = 0.4, the transient flow development in the enclosure reaches a regime of
self-sustained periodic oscillation in time, as illustrated in Figure 3. The
buoyancy-driven flow of cold water in the enclosure has evolved from a steady
state to a periodic attractor through a Hopf bifurcation. It can be noticed from
Figures 3(d) and 3(e) that the oscillation amplitude of the stream function at the
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(–
41

.2
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Figure 2.
Steady state results of
streamline pattern (left)
and isotherm
distribution (right) for
�m = 0.4;
(a) RaW � 7� 104 and
(b) RaW � 4� 105
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center point,  c, is considerably larger than that of the corresponding
temperature �c. The Fourier spectrum for the periodic variation of the five
quantities shown in Figure 3 (not shown here) reveals that all of them are
impelled at the same dimensionless frequency of f = 166.67. Figure 4 displays a
time sequence of the flow structure and temperature distribution over one
period of oscillation at RaW = 5� 105. A cyclic sequence of splitting and
merging of the upward-drifting secondary vortices within the contra-rotating
double-circulation structure can be clearly observed from the streamline plots
of Figure 4. As a result, the jet-like flow along the maximum density contour
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displays a traveling wave motion as it turns through the neck-down region into
the core of the enclosure. Similar wavy sinking jet flow structure has been
experimentally visualized by Lankford and Bejan (1986) in a cold-water-filled
enclosure of aspect ratio 5.05 subjected to the mixed thermal boundary
conditions on the vertical walls. In addition, in accordance with the upward-
drifting movement of the clockwise secondary vortices through the region, a
cyclic variation of wavy isotherms in the thermal boundary layer can be
discerned along the hot wall. Conversely, near the bottom quarter region of the
enclosure the maximum density contour remains essentially stagnant, where a
rather isothermal region exists.

To gain further insight of the space-time structure of the oscillatory
convection, the instantaneous fluctuating stream function and temperature
fields at the instants corresponding to those shown in Figure 4 over an
oscillation period are presented in Figure 5. The fluctuating value of the stream
function or temperature was evaluated in every grid point by subtracting the
local time-averaged value from the local instantaneous value. The solid and
dashed contours in Figure 5 denote, respectively, the local instantaneous value
higher and lower than the local time-averaged value. Two numbers enclosed in
the parentheses, shown with each fluctuation contour plots, are, respectively,
the maximum and minimum magnitudes of the fluctuating quantities. The
contour plots of fluctuating stream function and temperature clearly display a
cyclic sequence of initiation, growth, upward movement, and decay. From the
fluctuating stream-function plots, one can notice that the flow velocity
fluctuation displays a form of consecutive structure with alternate sign of
magnitude. The velocity fluctuation starts at a location below the mid-height, y
� 0.36, of the enclosure; and then grows in amplitude as it moves upward along
the maximum density contour. Peak amplitude of the fluctuation appears
around the neck-down region. Afterwards, as it further drifts upward past the
neck-down region into the upper-quarter portion of the enclosure, the velocity
fluctuation starts to decay with its center shifting toward the hot wall. This
appears to be synchronized with the cyclic movement displayed by the
clockwise secondary vortex center that is shown in Figure 4. On the other hand,
unlike the stream function fluctuations, the temperature fluctuations appear to
be mostly confined within the clockwise multicellular region next to the hot
wall. The consecutive locally hot and cold patterns shown by the fluctuating
temperature contours in Figure 5 undergo a somewhat different cyclic
evolution than that of the corresponding fluctuating stream function. Starting
from a location below mid-height of the thermal boundary layer along the hot
wall, the fluctuating temperature structure arises and then grows in magnitude
as it is drifted upward by the vertical boundary layer flow. A close look at the
temperature fluctuation contours reveals that the growing temperature
fluctuation penetrates across the maximum density contour, where it is
subjected to downward dragging by the sinking maximum density jet-like
flow. As a result, the temperature fluctuation structure beyond mid-height of
the hot wall is seen to split into a twin-peak structure with one of the fluctuation
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peaks centered on the maximum density contour. The twin-peak fluctuation
structure of temperature reaches its maximum magnitude around the neck-
down region. This is also where the waviness in isotherms and the maximum
density contour can be clearly detected. Afterwards, the twin-peak fluctuation
structure begins to decay in magnitude and gradually separates into two
isolated structures while it passes through the neck-down region. One of the
separated temperature fluctuation structures then moves along the upward-
slanted maximum density contour and eventually diminishes at the cold wall.
Meanwhile, the other separated fluctuation structure continues to be convected
upward and diminishes at the ceiling of the enclosure.

Further insight into the nature of the instability mechanism for the present
case can be gained by examining the production terms of the fluctuating kinetic
energy of the oscillatory convection in the enclosure. That is the term group III
of equation (4), which may be due to the flow shear and/or the buoyancy force.
To this end, equation (4) is integrated over one period of the oscillation of the
present case. The resultant distributions of local production of time-integrated
fluctuating kinetic energy due to flow shear and buoyancy are presented in
Figure 6, respectively. The shear-induced positive fluctuating kinetic energy, as
shown in Figure 6(a), only exists on either side of the maximum density contour
in the neck-down region. This shear-induced instability, however, is not as
dominant as the positive production region due to buoyancy displayed in
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�m = 0.4. Negative iso-
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Figure 6(b). The positive buoyancy-induced production is present mostly in the
second half of the vertical boundary layer along the hot wall and appears to be
largest around the neck-down region. On the other hand, in the counter-
clockwise circulation region a relatively small contribution to the buoyancy-
induced production can be detected along the wavy maximum density contour.
It can then be concluded from Figure 6 that the buoyancy or the temperature
fluctuation is the primary source for local production of the fluctuating kinetic
energy. This can be further confirmed by checking the total fluctuating kinetic
energy production budget, which is obtained by integrating the local
production of fluctuating kinetic energy shown in Figure 6 over the entire
enclosure. The result reveals that for the present case the production of total
fluctuating kinetic energy is contributed completely by the buoyancy; while the
flow shear contributes negatively (±9.7 percent) to the production of total
fluctuating kinetic energy. This clearly indicates that the transition from
steady into periodically oscillatory convection of cold water in the enclosure at
�m = 0.4 is a buoyancy-driven instability.

Supercritical simulations for �m = 0.4 were further conducted by progressive
increase of the Rayleigh number up to 2� 106. The solutions to these cases all
remain periodic with increasingly higher frequencies f . Moreover, the critical
Rayleigh number for the transition into oscillatory convection under �m = 0.4,
based on these simulations, is estimated to be 4� 105 < �RaW �cr � 5� 105 (or
2:05� 108 < �RaH �cr � 2:56� 108�.

Next, for �m = 0.5 the oscillatory convection in the enclosure was first
observed at RaW = 8� 104 with a frequency of f = 41.32, which is much lower
than the value of 166.67 found for RaW = 5� 155 at �m= 0.4. Figure 7 displays
the cyclic sequence of the stream function and temperature fields at RaW =
8� 104. The flow structure shown in Figure 7 features a somewhat similar
cyclic sequence of unsteady multicellular flow development to that found at �m

= 0.4. That includes onset at the bottom region, upward drifting, growth, and
decay of the split vortices within the contra-rotating double-circulation flows of
approximately equal size, respectively. Consequently, the maximum density
contour becomes corrugated featuring an upward traveling sinusoidal wave
through the core region of the enclosure. The wavelength of the traveling wave
of the maximum density contour, which is also the distance between the co-
rotating upward-drifting secondary vortices, tends to increase while
propagating upward and has an averaged dimensionless value of �=H = 0.226.
Furthermore, it can be seen that the maximum density jet flow coming off the
midpoint of the ceiling turns unstable, undergoing a series of horizontal
meanders in a diminishing magnitude while sinking through the central core
region of the enclosure. It should be noted that for the present case the Rayleigh
number based on the enclosure height RaH (= 4:10� 107) appears to satisfy the
estimated criterion of RaH > 107 by Ivey and Hamblin (1989). Moreover, the
isotherms within the contra-rotating circulation regions (shown in Figure 7)
exhibit a cyclic sequence of upward traveling wave trains emanating at the
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bottom quarter-height of the vertical walls. This cyclic variation appears to be
in synchronization with the traveling sinusoidal wave motion of the maximum
density contour.

The space-time structures of the stream function and temperature fields
display more or less symmetry with respect to the wavy maximum density
contour. Accordingly, a symmetric time-averaged flow and temperature
structure in the enclosure as shown in Figure 8 results. A co-rotating bicellular
flow structure can be seen to be superimposed on, respectively, the clockwise
and counter-clockwise circulation flows of approximately equal strength,
which are demarcated by a centrally-located, vertically oriented maximum
density contour. Another interesting fact which can be observed in Figure 8 is
that the time-averaged isotherms within the contra-rotating double-circulation
regions feature a conduction-regime distribution with no vertical temperature
stratification in their respective core regions. Under this circumstance, the
internal wave motion is virtually precluded from taking place inside the cold-
water-filled enclosure. This means that the sinusoidal waviness of the
maximum density jet-like flow structure is simply caused by the onset of
unstable co-rotating multicellular secondary vortices within the contra-rotating
bicellular flow regions.

In Figure 9 the cyclic spatial structure of the fluctuating stream function and
temperature for RaW = 8� 104 are presented. Both fluctuating quantities
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undergo a similar cyclic variation. The fluctuation arises at the bottom region,
whereupon the maximum density contour starts it meandering; and then grows
in size and magnitude on its course of upward drifting along the vertical mid-
line of the enclosure. Finally, the fluctuation diminishes at the ceiling of the
enclosure. A closer examination of the fluctuation structures reveals that the
consecutive fluctuation structures of alternate sign penetrate extensively
across the enclosure and have their peaks always centered to the left or the
right side of the wavy maximum density contour. Moreover, the spatial
distributions of local production of the time-averaged fluctuating kinetic
energy due to flow shear and buoyancy are, respectively plotted (as shown in
Figure 10) to further identify the nature of the instability mechanism. The local
production of time-integrated fluctuating kinetic energy due to buoyancy or
shear exhibits a symmetric distribution with respect to the time-averaged
maximum density contour. It is evident from Figure 10 that the buoyancy is the
dominant source for the fluctuating kinetic energy production with a spatial
distribution occupying nearly the whole upper half portion of the enclosure.
The flow shear only contributes energy to the fluctuating flow around the
upper quarter portion of the maximum density contour. Further, the total
production of the fluctuating kinetic energy in the enclosure is found to be
similar to that found for �m = 0.4, solely contributed by the buoyancy. The
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supercritical Hopf bifurcation to oscillatory convection of cold water in the
enclosure under �m = 0.5 is therefore of thermal in nature associated with the
temperature fluctuation.

As the Rayleigh number is further increased progressively up to 105 for �m =
0.5, the buoyant flow in the cold-water-filled enclosure remains oscillatory in
time. The critical Rayleigh number �RaW �cr for �m = 0.5 may be bounded to the
range between 7� 104 and 8� 104 (or 3:584� 107 < �RaH �cr < 4:10� 107).
This critical Rayleigh number appears to be much smaller than that found for
�m = 0.4.

This clearly reflects the significant role played by the density inversion
parameter �m, which primarily determines the position or profile of the
maximum density contour, on the transition into unsteadiness of nature
convection in the cold-water-filled enclosure.

Heat transfer results
Finally, results of the surface-averaged heat transfer rate for the steady state or
periodically oscillatory convection of cold water in the enclosure are presented
by a time- and surface-averaged Nusselt number along the hot wall, Nuh;m.

In Figure 11, the data of Nuh;m are related to the Rayleigh number for the two
values of �m considered here and can be correlated as

Nuh;m � CRan
W �5�

where the coefficient C and the exponent n are evaluated by means of the least-
squares regression for the two values of �m as listed in Table II. The small
exponent value of 0.124 for the steady state natural convection at �m = 0.5 is
another indication of convective flow in the conduction regime of natural
convection heat transfer across the enclosure.
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steady

periodic
steady

periodic
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Figure 11.
Time- and surface-

averaged heat transfer
rates across the

enclosure for
�m = 0.4 and 0.5
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Further scrutiny of Figure 11 reveals that at a fixed Rayleigh number the heat
transfer rate for �m = 0.5 is smaller than that for �m = 0.4. This finding is
consistent with the well-known density-inversion effect on the nature
convection heat transfer across the cold-water-filled enclosure.

Concluding remarks
This study is focused on the transition into oscillatory natural convection of
cold water in a two-dimensional vertical rectangular enclosure with an aspect
ratio of eight at two values of the density inversion parameter, �m = 0.4 and 0.5.
Through a series of numerical simulations, we have illustrated that with
incremental increase in the Rayleigh number, the steady convective flow of cold
water in the enclosure undergoes transition through a Hopf bifurcation, leading
to a self-sustained periodically oscillatory regime.

The position or profile of the maximum density contour of cold water in the
enclosure, which is primarily determined by the density inversion parameter, is
found to have a significant effect on the time-dependent evolution of buoyancy-
driven convective flow. Nature of the transitional instability into oscillatory
convection of cold water is demonstrated to be buoyancy-driven for both values
of �m considered. The thermally driven instability of natural convection in the
cold water-filled enclosure is found to feature a transition from unicellular to
periodically upward-drifting multicellular structure, respectively, within the
contra-rotating bicellular flow regions. A traveling wave motion along the
maximum density contour accordingly results. The critical Rayleigh number at
�m = 0.4 is found to be approximately one order of magnitude larger than that
corresponding to �m = 0.5.

As the final concluding remarks, we are fully aware that the assumption of
two-dimensional flow in the present study precludes the effects of three-
dimensionality on the onset of unsteadiness. It is, however, expected that the
two-dimensional simulations can still reveal well the dynamic characteristics of
transitional buoyant flow under the influence of density inversion. This has
been supported from our preliminary results of direct three-dimensional
simulations for the present configuration that are currently underway.

Results of the three-dimensional effects on the transition to unsteady
convection of cold water in the tall rectangular enclosure will be presented in a
future paper. Moreover, the influence of the aspect ratio of the enclosure and of
the density inversion parameter in wider ranges certainly deserves further
investigations.

Table II.
Coefficients and
exponents of heat
transfer correlation,
equation (5), for
�m = 0.4 and 0.5

�m C n RaW range Averaged deviation

0.4 0.0574 0.307 7� 104 � 2� 106 1.3%
0.5 0.317 0.124 2� 104 � 7� 104 1.0%

0.0046 0.506 7� 104 � 105 0.8%
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